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SUMMARY

We consider different ways of constructing weighted Hochberg-type step-up multiple test
procedures including closed procedures based on weighted Simes tests and their conservative
step-up short-cuts, and step-up counterparts of two weighted Holm procedures. It is shown that
the step-up counterparts have some serious pitfalls such as lack of familywise error rate control
and lack of monotonicity in rejection decisions in terms of p-values. Therefore an exact closed
procedure appears to be the best alternative, its only drawback being lack of simple stepwise
structure. A conservative step-up short-cut to the closed procedure may be used instead, but with
accompanying loss of power. Simulations are used to study the familywise error rate and power
properties of the competing procedures for independent and correlated p-values. Although many
of the results of this paper are negative, they are useful in highlighting the need for caution when
procedures with similar pitfalls may be used.

Some key words: Bonferroni test; Closed procedure; Familywise error rate; Holm procedure; Multiple comparisons;
p-Value; Simes test; Step-down procedure; Step-up procedure.

1. INTRODUCTION

Hochberg’s (1988) procedure is widely used in practice because of its simple step-up testing
algorithm and higher power in the class of p-value-based multiple test procedures, compared to
the Holm (1979) step-down procedure, for example. Weighted versions of the Bonferroni and
Holm procedures, as well as that of a sharper Bonferroni-type procedure due to Simes (1986), have
been proposed for multiple testing problems; see Holm (1979), Hochberg & Liberman (1994)
and Benjamini & Hochberg (1997). However, a weighted version of the Hochberg procedure has
not been proposed, although such a procedure would potentially inherit similar power advantages
over its competitors. The purpose of the present paper is to study alternative ways of constructing
weighted Hochberg-type procedures and make recommendations for their use. The study helps
us to highlight the pitfalls associated with some of the weighted step-up procedures.

Hypotheses may be differentially weighted because of their different importance, and to obtain
higher power (Benjamini & Hochberg, 1997). Weighted procedures are also needed in some
applications even when the original hypotheses are equally weighted, as in gatekeeping procedures
(Dmitrienko et al., 2007).
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Suppose that there are n � 2 hypotheses, H1, . . . , Hn , which are to be tested based on their
p-values, p1, . . . , pn . Further suppose that positive weights, w1, . . . , wn , which sum to 1, are
preassigned to the hypotheses. Throughout we assume the standard requirement (Hochberg &
Tamhane, 1987, p. 3) for any multiple test procedure that the familywise error rate,

FWER = pr(Reject at least one true hypothesis),

be controlled strongly, i.e., under all possible configurations of the true and false hypotheses, at
a specified level α.

In the unweighted case, with all wi = 1/n, the Hochberg and Holm procedures, which we
shall denote by HC and HM, respectively, operate as follows. Let p(1) � · · · � p(n) be the ordered
p-values and let H(1), . . . , H(n) be the corresponding hypotheses. Procedure HC tests the hypothe-
ses in a step-up manner starting with H(n), accepting one hypothesis at a time, and stopping at
the i th step and rejecting H(n−i+1), . . . , H(1) if p(n−i+1) � α/ i . On the other hand, procedure
HM tests the hypotheses in a step-down manner starting with H(1), rejecting one hypothesis at a
time, and stopping at the i th step and accepting H(i), . . . , H(n) if p(i) > α/(n − i + 1). Since both
procedures use the same critical constants, it is clear that HC rejects all the hypotheses rejected
by HM, and possibly more.

For guaranteed familywise error rate control by procedure HC, the p-values must be independent
since that assumption underlies the Simes (1986) test on which it is based. This requirement can
be relaxed to allow positively dependent p-values using the extension of the Simes test to this
case by Sarkar & Chang (1997) and Sarkar (1998). Procedure HM and the Bonferroni test on
which it is based do not make the independence assumption. In most of this paper we assume
that the p-values are independent; the dependent case is discussed in § 5.

Two types of weighted procedures have been proposed in the literature. Type-1 procedures are
based on ordered raw p-values, pi , while Type-2 procedures are based on ordered weighted
p-values, p∗

i = pi/wi . We denote the corresponding weighted Holm procedures by WHM1

and WHM2, and weighted Simes procedures by WSM1 and WSM2, respectively. Note that WSM1

and WSM2 are global, not multiple tests, which we use in this paper to construct two weighted
closed procedures, WCL1 and WCL2. We also study two weighted Hochberg procedures, denoted
by WHC1 and WHC2, that are step-up counterparts of WHM1 and WHM2, respectively. We compare
these procedures based on the criteria of the familywise error rate control and power. Another
criterion that we use to compare different weighted Hochberg procedures is their monotonicity
in terms of p-values: if one or more p-values are made smaller while the other p-values are kept
unchanged then a procedure should reject at least the same or more hypotheses. Although intu-
itively plausible, some weighted procedures do not satisfy this property, as shown by Benjamini
& Hochberg (1997) for WHM1.

2. WEIGHTED CLOSED PROCEDURES

2·1. Type-1 weighted closed procedure, WCL1

The original Hochberg procedure was derived as a conservative approximation to a closed
procedure in which the Simes (1986) global test was used to test all subset intersection hypotheses.
We follow the same approach in the weighted case. In this and the following subsection, we
construct weighted closed procedures, WCL1 and WCL2, using the weighted Simes tests, WSM1

and WSM2, respectively. The WSM1 test used in the weighted closed procedure below is based
on the following generalization of the Simes identity due to Benjamini & Hochberg (1997).
If p(1) � · · · � p(n) are order statistics of n independent and identically distributed Un(0, 1)
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random variables then

pr

{
p(i) >

(
i∑

k=1

w(k)

)
α for all i = 1, . . . , n

}
= 1 − α. (1)

Procedure WCL1 operates as follows. Let I = {i1, . . . , im} be a nonempty subset of the in-
dex set N = {1, . . . , n}. Furthermore, let p(i1) � · · · � p(im ) be the ordered p-values and let
w(i1), . . . , w(im ) be the weights associated with them. Throughout, it will be assumed that ties
between the p-values are broken at random. Then test and reject HI = ⋂m

j=1 H(i j ) at level α if
and only if all HJ for J ⊃ I are rejected and

p(i j ) �
∑ j

k=1 w(ik )∑m
k=1 w(ik )

α, for at least one j = 1, . . . , m. (2)

Since this is an α-level test of every intersection hypothesis, it follows from the closure principle
of Marcus et al. (1976) that procedure WCL1 controls the familywise error rate at the α-level. The
following example illustrates this procedure.

Example 1. The table below gives the p-values and weights for three hypotheses.

H1 H2 H3

p1 = 0·03 p2 = 0·035 p3 = 0·1
w1 = 0·2 w2 = 0·6 w3 = 0·2

Procedure WCL1 begins by testing H1 ∩ H2 ∩ H3 and rejects it since p2 � (w1 + w2)α = 0·04.
Next it tests H1 ∩ H2, H1 ∩ H3 and H2 ∩ H3. Both intersections that include H2 are rejected

since, in the case of H1 ∩ H2, p2 � α = 0·05 and, in the case of H2 ∩ H3, p2 � {w2/(w2 +
w3)}α = 0·0375. However, H1 ∩ H3 cannot be rejected since p1 > {w1/(w1 + w3)}α = 0·025
and p3 > α = 0·05. Therefore, in the last stage, we only test H2 and reject it since p2 � α = 0·05.
Thus, WCL1 accepts H1 and H3, but rejects H2.

Procedure WCL1 lacks a simple stepwise structure, so it is not easy to apply it by hand for larger
n, although it is easy to program. Also, it is not easy to explain it to practitioners. To overcome
these drawbacks, we next derive a conservative step-up approximation to it. We first introduce the
idea of critical matrix for a closed procedure, due to Liu (1996). Assume that the hypotheses are
equally weighted and there exist critical constants cm1 � · · · � cmm for testing any intersection
hypothesis HI = ⋂m

j=1 H(i j ) for a nonempty subset I ⊆ N such that, under HI ,

min
HI

pr{p(i1) > cmm, . . . , p(im ) > cm1} � 1 − α, (3)

where the minimum is taken over all HI of given cardinality m, where m = 1, . . . , n. Then the
test that rejects HI if

p(i j ) � cm,m− j+1 for at least one j = 1, . . . , m

has level α. Hence the closed procedure that uses this test for all intersection hypotheses controls
the familywise error rate at level α. The Simes identity is a special case of (3) for cmj =
(m − j + 1)α/m.
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The critical matrix is a lower-triangular matrix of which the mth row gives the ordered critical
constants for testing any intersection hypothesis of cardinality m and is given by

C =

⎡
⎢⎢⎢⎣

c11

c21 c22
...

...
. . .

cn1 cn2 · · · cnn

⎤
⎥⎥⎥⎦ ·

Theorem 2 of Liu (1996) shows that if the elements of each row of C are equal then the closed
procedure has a step-down short-cut. For example, if cmj = α/m ( j = 1, . . . , m), namely the
Bonferroni critical constants, then we obtain procedure HM; in that case, the first column of
C from the bottom up, namely (α/n, α/(n − 1), . . . , α), gives the critical constants for testing
the ordered p-values, p(1) � · · · � p(n). Theorem 3 of Liu (1996) shows that if the elements
of each column of C are equal then the closed procedure has a step-up short-cut. For example,
if cmj = α/j ( j = 1, . . . , m) then we obtain procedure HC; in that case, the last row, namely
(α, α/2, . . . , α/n), gives the critical constants for testing the ordered p-values, p(n) � · · · � p(1).
If one uses the Simes critical constants, cmj = (m − j + 1)α/m, which are sharper than the
constants in procedure HC, cmj = α/j , then we get Hommel’s (1988) procedure; in this case C
does not have equal column entries and hence lacks a simple step-up short-cut. Rom (1990)
provided a method for computing the critical constants cmj under the constraint cmj = cm+1, j ,
which makes the column entries equal. Rom used the usual ordering of the critical constants,
namely cm1 � · · · � cmm , and the constraint cmj = cm+1, j+1, thus making the subdiagonal entries
equal, which is equivalent to making the column entries of C equal in Liu’s notation.

If the hypotheses are not equally weighted, the critical constants of procedure WCL1 are generally
different for each subset of size m, except for m = 1, there being nCm rows of critical constants
for each m, or (2n − 1) rows altogether; thus the critical matrix is not square. For n = 3, this
matrix is given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

α

α

α {w(1)/(w(1) + w(2))}α
α {w(1)/(w(1) + w(3))}α
α {w(2)/(w(2) + w(3))}α
α (w(1) + w(2))α w(1)α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H(1)

H(2)

H(3)

H(1) ∩ H(2)

H(1) ∩ H(3)

H(2) ∩ H(3)

H(1) ∩ H(2) ∩ H(3).

The intersection hypothesis tested by each row of critical constants is shown alongside that row.
To obtain a step-up short-cut to procedure WCL1, we use Theorem 3 of Liu (1996) and make the

column entries of C equal by replacing the entries in each column by their minima. The resulting
closed procedure is obviously conservative; we denote it by CWCL1. The first column has all entries
equal to α, so the minimum is α. In the second column, the entries {w(1)/(w(1) + w(3))}α and
{w(2)/(w(2) + w(3))}α are both less than or equal to the bottom entry, (w(1) + w(2))α. Therefore,
the second column can be replaced by the minimum of the top three entries. Finally, the third
column has only one entry. Let

γ1 = 1, γ2 = min

{
w(1)

w(1) + w(2)
,

w(1)

w(1) + w(3)
,

w(2)

w(2) + w(3)

}
, γ3 = w(1).
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We reject an intersection hypothesis HI = ⋂m
j=1 H(i j ) if p(i j ) � γm− j+1α for some j = 1, . . . , m.

Thus any intersection hypothesis of cardinality m uses the same set of critical constants that
depend only on m. Therefore the nCm rows of critical constants for all intersection hypotheses of
cardinality m become equal and can be collapsed into a single row, resulting in the square critical
matrix

C =
⎡
⎢⎣
γ1α

γ1α γ2α

γ1α γ2α γ3α

⎤
⎥⎦ .

The last row gives the sequence of the critical constants, (γ1α, γ2α, γ3α), for procedure CWCL1

for testing p(3) � p(2) � p(1).
In general, it can be shown that

γ1 = 1,

γ2 = min
(i1),(i2)

{
w(i1)

w(i1) + w(i2)

}
,

γ3 = min
(i1),(i2),(i3)

{
w(i1)

w(i1) + w(i2) + w(i3)

}
,

...

γn = w(1),

where w(i1), . . . , w(im ) are the weights associated with the ordered p-values, p(i1) � · · · � p(im ),
for any nonempty subset I ⊆ N . It follows from the definition that γ1 � · · · � γn and hence the
critical values, ci = γn−i+1α, are monotone: c1 � · · · � cn . The procedure continues by testing
the ordered p-values as long as p( j) > γn− j+1α for j = n, . . . , i + 1. If p(i) � γn−i+1α then it
rejects H(i), . . . , H(1) and stops testing. In the case of equal weights, we have γm = 1/m (m =
1, . . . , n) and we obtain procedure HC. It is easy to show that WCL1 and CWCL1 are identical when
n = 2.

Example 2. Refer to the data from Example 1. We have

γ1 = 1, γ2 = min
{

0·2
0·2 + 0·6 ,

0·2
0·2 + 0·2 ,

0·6
0·6 + 0·2

}
= 0·25, γ3 = 0·2.

Hence CWCL1 compares p(3) = 0·1 with γ1α = 0·05, so does not reject, p(2) = 0·035 with γ2α =
0·0125, so does not reject, and p(1) = 0·03 with γ3α = 0·01, so does not reject. Recall that WCL1

rejects H2.

2·2. Type-2 weighted closed procedure, WCL2

Hochberg & Liberman (1994) proposed a Type-2 weighted Simes test, WSM2, based on weighted
p-values, p∗

i = pi/wi . Let p∗
(1) � · · · � p∗

(n) be their ordered values. Let H∗
(i) be the hypotheses

and w∗
(i) the weights associated with the ordered p∗

(i). Procedure WSM2 requires that
∑

wi = 1
and max wi � 1/nα. It rejects the overall intersection hypothesis

⋂n
i=1 Hi if

p∗
( j) � jα for at least one j = 1, . . . , n. (4)

In this section, we explore the possibility of basing a closed test procedure, WCL2, on WSM2.
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Benjamini & Hochberg (1997) showed that WSM1 is more powerful than WSM2 if the weights
are ordered opposite to that of the p-values; this would happen if higher weights were assigned to
the hypotheses, which are expected to give the most significant results, and the a priori ordering
of the weights turns out to be correct. In general, neither procedure dominates the other. However,
using the WSM2 test in WCL2 leads to some practical difficulties and a rather unwieldy procedure
as explained below.

Procedure WCL2 uses WSM2 to test any subset intersection hypothesis HI = ⋂m
j=1 Hi j as follows.

Recalculate the weights for the hypotheses to normalize them:

w
(I )
i j

= wi j∑m
k=1 wik

( j = 1, . . . , m).

This normalization is not required for WSM1 since its critical constants are functions of the ratios
of weights, so the normalizing constant cancels out. Furthermore, if any w

(I )
i j

> 1/mα, then set
it equal to 1/mα; this makes

∑
w

(I )
i j

< 1 and the procedure becomes conservative. Recalculate
the weighted p-values,

p∗(I )
i j

= pi j

w
(I )
i j

( j = 1, . . . , m),

and order them as p∗(I )
(i1) � · · · � p∗(I )

(im ) . Then reject HI at level α if and only if all HJ for J ⊃ I
are rejected and

p∗(I )
(i j ) � jα for at least one j = 1, . . . , m.

As one can see, WCL2 is rather complicated because of the need to recalculate the weights and
weighted p-values for every intersection hypothesis. The restriction that max w

(I )
i j

� 1/mα can
be severe if m is large. Also, it is not possible to give a simple conservative step-up short-cut to
WCL2, as we were able to do for WCL1. Given these difficulties and the fact that WCL2 does not
have a uniform power advantage over WCL1, we chose not to consider WCL2 any further.

3. STEP-UP COUNTERPARTS OF WEIGHTED HOLM PROCEDURES

3·1. Type-1 weighted Hochberg procedure, WHC1

Let p(1) � · · · � p(n) be the ordered p-values, and let H(i) be the hypotheses and w(i) the
weights associated with the ordered p(i). Benjamini & Hochberg (1997) proposed a weighted
Holm procedure, WHM1, which operates as follows. At the first step, test H(1) by comparing p(1)

with w(1)α. If p(1) > w(1)α then accept all hypotheses and stop testing; otherwise, reject H(1) and
proceed to test H(2) by comparing p(2) with w(2)α/

∑n
k=2 w(k). In general, accept H(i), . . . , H(n)

if

p(i) >
w(i)∑n

k=i w(k)
α

and stop testing; otherwise reject H(i) and continue to test H(i+1).
By analogy with WHM1, we propose the following procedure WHC1. At the first step, test H(n) by

comparing p(n) with α. If p(n) � α then reject all hypotheses and stop testing; otherwise, accept
H(n) and proceed to test H(n−1) by comparing p(n−1) with w(n−1)α/

∑n
k=n−1 w(k). In general,
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reject H(i), . . . , H(1) if

p(i) � w(i)∑n
k=i w(k)

α (5)

and stop testing; otherwise accept H(i) and continue to test H(i−1). Since WHC1 uses the same
critical values as WHM1, as with the relationship between HM and HC, WHC1 is more powerful than
WHM1.

Remark 1. If we can show that any hypothesis rejected by WHC1 is also rejected by WCL1

then it will follow that WHC1 controls the familywise error rate conservatively since WCL1 does.
Unfortunately, this result is not true in general except when n = 2, in which case WCL1 and WHC1

are equivalent, or when the weights are equal, in which case Hochberg (1988) used this method
of proof for procedure HC; however, there was a gap in his proof, which we fill in Remark 2. We
now explain the only case where the proof using this method fails. The other cases where the
method works are covered in a working paper available from the first author.

Suppose that, for n � 2, the largest i for which p(i) satisfies (5) is greater than 1 and less
than n; so WHC1 rejects all H( j) for j = 1, . . . , i . We will exhibit an intersection hypothesis HI

containing H( j) for j < i such that WCL1 accepts HI and hence also H( j). Let I = {( j), (n)}. Then
WCL1 finds HI significant at level α if

p( j) � w( j)

w( j) + w(n)
α or p(n) � α.

We know that p(n) > α and the first inequality is not always satisfied unless w( j) � w(i), in which
case

p( j) � p(i) � w(i)

w(i) + w(n)
α � w( j)

w( j) + w(n)
α. (6)

However, this condition cannot be guaranteed because of the randomness of the w( j) associated
with the ordered p( j) values unless, of course, the weights are equal. Example 3 illustrates this
point.

Remark 2. For equal weights, wi = 1/n, we show that if p( j) � p(i) � α/(n − i + 1) then
the unweighted closed procedure CL rejects all HI containing H( j) for j < i , which Hochberg
did not show. Suppose that HI contains s hypotheses, including H( j), with p-values � p(i) and t
hypotheses with p-values > p(i) and let r � s be the rank of p( j) among the s + t ordered p-values
of these hypotheses. Then, in the test of HI , CL compares p( j) with {r/(s + t)}α. However,

p( j) � p(i) � 1

n − i + 1
α � r

s + t
α,

where the last inequality follows since r � 1 and s + t � n − i + 1. Hence CL rejects all HI

containing H( j).

Example 3. Consider the data from Example 1. The critical constants for WHC1 are shown in
the following table.

H1 H2 H3

p1 = 0·03 p2 = 0·035 p3 = 0·1
w1 = 0·2 w2 = 0·6 w3 = 0·2

c1 = w1α = 0·01 c2 = {w2/(w2 + w3)}α = 0·0375 c3 = α = 0·05
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Procedure WHC1 accepts H3 since p3 > 0·05, but rejects H1 and H2 since p2 < 0·0375. Recall
that WCL1 does not reject H1, so that WHC1 is not more conservative than WCL1. This is because

w1

w1 + w3
α = 1

2
α <

w2

w2 + w3
α = 3

4
α,

which violates the required inequality (6) because w1 < w2. In this example, CWCL1 does not
reject any hypothesis, nor does WHM1 since p1 = 0·03 > c1 = 0·01.

Next we show that a direct proof of the familywise error rate control of WHC1 along the lines
of Liu (1996) also fails. This direct proof is based on showing that the probability of accepting
all true hypotheses is minimized when the p-values from all false hypotheses approach zero, and
the resulting lower bound equals 1 − α from the Simes identity (1). To be specific, suppose that
H1, . . . , Hm are true and Hm+1, . . . , Hn are false. If we can show that the familywise error rate
is maximized when pi → 0 (i = m + 1, . . . , n) then we would obtain

1 − FWER � pr

{
p( j) >

w( j)∑m
k= j w(k)

α for all j = 1, . . . , m

}

� pr

{
p( j) >

∑ j
k=1 w(k)∑m
k=1 w(k)

α for all j = 1, . . . , m

}

= 1 − α,

where the second step follows because

w( j)∑m
k= j w(k)

�
∑ j

k=1 w(k)∑m
k=1 w(k)

and the final step follows from (1). Unfortunately, it is not always true, except when the weights
are equal, that familywise error rate is maximized when the p-values for all false hypotheses
approach zero as shown by the following counterexample.

Example 4. Consider again the data from Example 1, and assume that H1 and H3 are true and
H2 is false. Then WHC1 rejects H1 and H2, thus committing a Type-1 error. Compare this scenario
with the following in which we let p2 → 0. Then the p-values are ordered as p2 < p1 < p3. The
critical values to which they are compared equal

c2 = w2α = 0·03, c1 = w1

w1 + w3
α = 0·025, c3 = α = 0·05.

Procedure WHC1 rejects only H2 in this case and hence does not commit a Type-1 error. Therefore
letting p2 → 0 decreases the chance of making a Type-1 error. This is a consequence of the
critical values not being monotone.

Despite these negative results, the simulations reported in § 4 fail to show a single case where
WHC1 is anticonservative; in fact, in all the cases that we studied, WHC1 is slightly more conservative
than WCL1. Thus, for practical purposes, WHC1 may be regarded as acceptable with regard to the
familywise error rate control.

3·2. Type-2 weighted Hochberg procedure, WHC2

Holm (1979) proposed procedure WHM2, which operates as follows. Let H∗
(1), . . . , H∗

(n) be the
hypotheses associated with the ordered weighted p-values, p∗

(1) � · · · � p∗
(n). At the first step, test
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H∗
(1) by comparing p∗

(1) with α. If p∗
(1) > α then accept all hypotheses and stop testing; otherwise,

reject H∗
(1) and proceed to test H∗

(2) by comparing p∗
(2) with α/

∑n
k=2 w∗

(k). In general, accept
H∗

(i), . . . , H∗
(n) if

p∗
(i) >

α∑n
k=i w∗

(k)
(7)

and stop testing; otherwise reject H∗
(i) and continue to test H∗

(i+1).
By analogy with WHM2, we consider procedure WHC2, which operates as follows. At the first

step, test H∗
(n) by comparing p∗

(n) with α/w∗
(n), i.e., by comparing the pi corresponding to p∗

(n)
with α. If that pi � α then reject all hypotheses and stop testing; otherwise, accept Hi = H∗

(n) and
proceed to test H∗

(n−1) by comparing p∗
(n−1) with α/

∑n
k=n−1 w∗

(k). In general, reject H∗
(i), . . . , H∗

(1)
if

p∗
(i) � α∑n

k=i w∗
(k)

(8)

and stop testing; otherwise accept H∗
(i) and continue to test H∗

(i−1). Unfortunately, WHC2 does not
control the familywise error rate, even though WHM2 does, as shown in the following proposition
for n = 2. Simulations show that lack of familywise error rate control persists for n > 2, and
therefore we drop procedure WHC2 from consideration.

PROPOSITION 1. For n = 2, under the overall null hypothesis H = H1 ∩ H2, the familywise
error rate for WHC2 is symmetric about w1 = 1/2 and, for w1 � 1/2, is given by

FWER =
{

α(1 − α) + α2 (w1/w2 + w2/w1) /2, if α/(1 + α) � w1 � 1/2,

1 − (1 − α)2 − (w1/2w2)(1 − α2), if w1 � α/(1 + α).
(9)

The minimum of this function is attained when w1 = w2 = 1/2 and equals α. The maximum is
attained when w1 = 0 or w1 = 1 and equals 1 − (1 − α)2. Therefore, FWER � α for all (w1, w2)
with equality holding if and only if w1 = w2 = 1/2.

The proof is given in the Appendix.
Figure 1 shows the plot of the familywise error rate of WHC2 given by (9) for α = 0·05. For

w1 = 0·5, FWER = 0·05 and, for w1 �= 0·5, FWER > 0·05 approaching 1 − (0·95)2 = 0·0975 as
w1 → 0 or 1.

4. SIMULATION RESULTS FOR INDEPENDENT p-VALUES

4·1. Results about the familywise error rate

We carried out simulations to study (i) whether or not WHC1 in fact controls the familywise
error rate, (ii) how closely WCL1 controls the familywise error rate, and (iii) how conservative
CWCL1 is. We first focused on the case of n = 3 and studied a range of configurations of true
and false hypotheses, and the associated weights. The ‘true’ p-values were generated from the
Un(0, 1) distribution while the ‘false’ p-values were generated by first generating z-statistics from
a N (δ, 1) distribution with δ = 1·0 and calculating their one-sided p-values from the formula
p = pr{N (0, 1) � z} = 1 − �(z), where �(z) is the standard normal cumulative distribution
function.

For n = 3, we studied the three cases of m = 1, 2 or 3 true hypotheses. Since the family-
wise error rates of all three procedures, WHC1, WCL1 and CWCL1, were highest when all three
hypotheses were true, the results only for that case are reported in Table 1. Each estimate of
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Fig. 1. Plot of the familywise error rate for procedure WHC2 for n = 2 under the overall null hypothesis
(α = 0·05).

Table 1. Estimates of familywise error rate for independent
p-values. Here n = 3, and all three hypotheses are true

Weights (T, T, T) WHC1 CWCL1 WCL1

(0·1, 0·45, 0·45) 0·0491 0·0485 0·0492
(0·2, 0·4, 0·4) 0·0498 0·0496 0·0502

(0·3, 0·35, 0·35) 0·0488 0·0488 0·0491
(0·4, 0·3, 0·3) 0·0493 0·0492 0·0496

(0·5, 0·25, 0·25) 0·0490 0·0485 0·0494
(0·6, 0·2, 0·2) 0·0495 0·0487 0·0496

(0·7, 0·15, 0·15) 0·0489 0·0478 0·0490
(0·8, 0·1, 0·1) 0·0498 0·0485 0·0499

(0·9, 0·05, 0·05) 0·0496 0·0478 0·0496

T, true hypothesis.

the familywise error rate is based on a total of 100 000 replications. The deviations of the
estimates from the nominal value of α = 0·05 should be standardized by the standard error,√{0·05 × 0·95/100 000} = 0·0007, in order to determine whether or not the estimates differ
significantly from α.

We see that WCL1 controls the familywise error rate very accurately and WHC1 is always
slightly conservative compared to WCL1. In no case does the estimated familywise error rate
of WHC1 exceed more than two standard deviations above the nominal value, i.e., higher than
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Table 2. Estimates of power for independent p-values
with n = 3, δ = 2, one true and two false hypotheses
Weights (T, F, F) WHM1 WHC1 CWCL1 WCL1

(0·1, 0·45, 0·45) 0·7469 0·7595 0·7484 0·7627
(0·2, 0·4, 0·4) 0·7273 0·7368 0·7298 0·7424

(0·3, 0·35, 0·35) 0·7049 0·7116 0·7099 0·7182
(0·4, 0·3, 0·3) 0·6781 0·6837 0·6833 0·6906

(0·5, 0·25, 0·25) 0·6445 0·6501 0·6486 0·6555
(0·6, 0·2, 0·2) 0·6072 0·6133 0·6110 0·6181

(0·7, 0·15, 0·15) 0·5576 0·5651 0·5614 0·5680
(0·8, 0·1, 0·1) 0·4855 0·4970 0·4907 0·4981

(0·9, 0·05, 0·05) 0·3788 0·3955 0·3862 0·3950
(0·45, 0·1, 0·45) 0·6160 0·6470 0·6215 0·6482
(0·4, 0·2, 0·4) 0·6653 0·6780 0·6698 0·6823

(0·35, 0·3, 0·35) 0·6912 0·6976 0·6964 0·7043
(0·3, 0·4, 0·3) 0·7043 0·7122 0·7078 0·7187

(0·25, 0·5, 0·25) 0·7050 0·7192 0·7073 0·7241
(0·2, 0·6, 0·2) 0·6994 0·7243 0·7014 0·7273

(0·15, 0·7, 0·15) 0·6836 0·7230 0·6861 0·7244
(0·1, 0·8, 0·1) 0·6605 0·7187 0·6635 0·7194

(0·05, 0·9, 0·05) 0·6150 0·7052 0·6201 0·7053

T, true hypothesis, F, false hypothesis.

0·05 + (2)(0·0007) = 0·0514. Thus, within the limits of sampling error, we conclude that WHC1

controls the familywise error rate. Procedure CWCL1 is, of course, conservative by construction.
We performed additional simulations for n = 5, which are not reported here. They confirm that
the familywise error rate of WHC1 is maximum when all hypotheses are true and this maximum
does not significantly exceed the nominal α = 0·05.

We also performed simulations to study the familywise error rate of WHC2 for n = 3 when all
three hypotheses are true. The results, not shown here, confirm that when the weight on one of the
hypotheses approaches 0 or 1, the familywise error rate exceeds the nominal α by a significant
amount. This result is in accord with the result for n = 2 in Proposition 1. The conclusion is that
WHC2 is not recommended for use.

4·2. Power results

It is clear that, by construction, WHC1 is more powerful than WHM1. Similarly, WCL1 is more
powerful than CWCL1. To assess the power advantages of these procedures over their conservative
counterparts, as well as to compare the powers of WCL1 and WHC1, we performed another simulation
study. We used the following definition of power.

Power = pr(Reject at least one false hypothesis).

Only the case n = 3, with one true and two false hypotheses, is reported here. We used the same
weight configurations as in § 4·1, and 100 000 replications were made for each run. The δ-values
for the false hypotheses were set equal to 2·0. The results are shown in Table 2. We also performed
simulations for an alternative definition of power, namely, pr(Reject all false hypotheses), but do
not report the results here.

Clearly, WCL1 is more powerful than the other three procedures in all cases except for one
extreme case, in which both false hypotheses have a weight of 0·05, with WHC1 a close second.
The difference between the powers of WCL1 and WHC1 is not statistically significant in any case.
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Table 3. Estimates of familywise error rate for correlated p-values.
Here n = 3, and all three hypotheses are true, with ρ = 0·5
Weights (T, T, T) WHC1 CWCL1 WCL1

(0·1, 0·45, 0·45) 0·0464 0·0443 0·0468
(0·2, 0·4, 0·4) 0·0439 0·0430 0·0447

(0·3, 0·35, 0·35) 0·0436 0·0435 0·0447
(0·4, 0·3, 0·3) 0·0447 0·0442 0·0459

(0·5, 0·25, 0·25) 0·0446 0·0434 0·0454
(0·6, 0·2, 0·2) 0·0475 0·0451 0·0480

(0·7, 0·15, 0·15) 0·0462 0·0431 0·0465
(0·8, 0·1, 0·1) 0·0476 0·0432 0·0477

(0·9, 0·05, 0·05) 0·0495 0·0438 0·0496

T, true hypothesis.

For the alternative definition of power given in the previous paragraph, this was not necessarily
the case and WHC1 had higher power than WCL1 in many cases, although the differences were
again not statistically significant. The power of WHM1 is lowest in all cases. Both WHM1 and CWCL1

suffer their greatest statistically significant power loss compared to WCL1 and WHC1 when the
weight on one of the false hypotheses is high, at least 0·6.

5. SIMULATION RESULTS FOR CORRELATED p-VALUES

Thus far we have assumed that the p-values are independent, but in practice the test statistics
are often correlated, as for example in the case of multiple endpoints or comparisons between
doses and a control. Based on the results of Sarkar (1998) and Sarkar & Chang (1997) regarding
the conservativism of the Simes test under positive dependence in the unweighted case, one may
conjecture that a similar result may hold true for the WSM1 test. This was proved by Y. Kling in
his unpublished 2005 Ph.D. dissertation from Tel Aviv University. In that case, WCL1, and hence
CWCL1, will control the familywise error rate under positive dependence; since WHC1 is found
to be slightly more conservative than WCL1 for independent p-values, it is also likely to control
the familywise error rate under positive dependence. By the same token, since the Simes test
can be anticonservative under negative dependence (Samuel-Cahn, 1996), the same result may
extend to WSM1, and hence WCL1 and WHC1 may be anticonservative under negative dependence.
We investigated these conjectures via simulation.

We studied how the familywise error rates of WHC1 and WCL1 depend on the correlation,
assumed to be common, between the p-values for the n = 3 case. One-sided p-values were
imputed from equicorrelated normally distributed z-statistics with common correlation ρ =
0·1(0·1)0·9 and also ρ = −0·4; we must have ρ > −0·5 in order for the joint distribution to be
nondegenerate. Independent, normally distributed z-statistics were transformed by application
of the Cholesky decomposition of the correlation matrix to obtain correlated z-statistics. The
z-statistics from the true hypotheses were distributed as N (0, 1) while those from the false
hypotheses were N (δ, 1) with δ = 1·0. For positive correlations, we studied three cases with the
number of true hypotheses m = 1, 2, 3. Keeping everything else fixed, we found that, for all
three procedures, the familywise error rate decreases as ρ increases for ρ < 1. Similarly, the
familywise error rate increases with m and the maximum is reached when m = 3, i.e., when all
hypotheses are true. To save space, we report the results only for m = 3 in Table 3 for ρ = 0·5
and in Table 4 for ρ = −0·4.
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Table 4. Estimates of familywise error rate for correlated p-values.
Here n = 3, and all three hypotheses are true, with ρ = −0·4

Weights (T, T, T) WHC1 CWCL1 WCL1

(0·1, 0·45, 0·45) 0·0502 0·0501 0·0502
(0·2, 0·4, 0·4) 0·0489 0·0489 0·0490

(0·3, 0·35, 0·35) 0·0502 0·0502 0·0502
(0·4, 0·3, 0·3) 0·0507 0·0507 0·0508

(0·5, 0·25, 0·25) 0·0507 0·0506 0·0507
(0·6, 0·2, 0·2) 0·0504 0·0504 0·0504

(0·7, 0·15, 0·15) 0·0496 0·0494 0·0496
(0·8, 0·1, 0·1) 0·0488 0·0486 0·0488

(0·9, 0·05, 0·05) 0·0493 0·0491 0·0493

T, true hypothesis.

From these simulations, we see that for ρ = 0·5 all three procedures control the familywise error
rate conservatively. For ρ = −0·4, the estimated familywise error rate values tend to be higher than
those for ρ = 0, but none of them is significantly higher than the nominal α = 0·05. We checked
whether or not the WSM1 test controls the Type-1 error rate for testing the overall intersection
null hypothesis for n = 3 and ρ = −0·4, and found that the test is anticonservative only for
the weight configuration (w1, w2, w3) = (0·3, 0·35, 0·35). This weight configuration is close to
the equal-weights configuration, in which case the Simes test is known to be anticonservative,
but the extent of anticonservatism is quite small. One may therefore conclude that any violation
of the familywise error rate control in the case of negative correlations would occur when the
weights are nearly equal, but this violation is likely to be small and therefore difficult to detect
via simulation.

6. MONOTONICITY OF PROCEDURES IN TERMS OF p-VALUES

The notion of p-value monotonicity mentioned in § 1 is defined as follows. Let P =
(p1, . . . , pn) and P ′ = (p′

1, . . . , p′
n) be two arbitrary vectors of p-values such that pi � p′

i
for all i with a strict inequality for some i . Then a procedure is p-value monotone if it rejects the
same hypotheses for the vector P as it does for the vector P ′, and possibly more.

It can be shown that both WSM1 and WSM2 are p-value monotone as tests of a single intersection
hypothesis, because their critical values are monotonically increasing. Therefore, the weighted
closed procedures, WCL1 and WCL2, based on them are also p-value monotone. On the other hand,
WHC1 is not p-value monotone except for n = 2, in which case it is equivalent to WCL1; we show
this in the following example. Procedure WHM1 is not p-value monotone even for n = 2, as was
shown by Benjamini & Hochberg (1997).

Example 5. The table below gives the p-values and weights for three hypotheses.

H1 H2 H3

p1 = 0·022 p2 = 0·023 p3 = 0·055
w1 = 0·2 w2 = 0·4 w3 = 0·4

c1 = w1α = 0·01 c2 = w2/(w2 + w3)α = 0·025 c3 = α = 0·05

We see that WHC1 accepts H3, but rejects H1 and H2. Now suppose p1 and p3 are kept fixed,
but p2 is reduced to 0·021. Then the ordering of the p-values changes, resulting in the table on
the following page.
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H2 H1 H3

p2 = 0·021 p1 = 0·022 p3 = 0·055
w2 = 0·4 w1 = 0·2 w3 = 0·4

c2 = w2α = 0·02 c1 = w1/(w1 + w3)α = 0·0167 c3 = α = 0·05

In this case WHC1 accepts all three hypotheses, although the p-values are no larger than before. It
can be checked that WCL1 rejects H2 in both cases. As a result of lack of p-value monotonicity,
we do not recommend WHC1.

Roth (1999) introduced another type of monotonicity, referred to as α-consistency, defined as
follows. If a procedure rejects a certain set of hypotheses for a given α then it should reject the
same hypotheses and possibly more for α′ > α. All the procedures discussed here are α-consistent
since their critical values are increasing functions of α.

Remark 3. To avoid the problem discussed in Remark 1, one could consider a conservative
modification of WHC1 that only rejects H(i) under (5) and not all H( j) for j < i . This is not a
stepwise procedure as it applies the test (5) separately to each H(i). It is more conservative than
WCL1 and hence controls the familywise error rate. It is easy to see that it rejects all the hypotheses
rejected by WHM1 and possibly more. However, it also fails the test of p-value monotonicity as
can be checked from the above example. Hence it is not recommended.

7. DISCUSSION

We have highlighted the difficulties inherent in constructing weighted Hochberg-type proce-
dures. The natural step-up analogues of the two weighted Holm procedures fail the test of p-value
monotonicity or the familywise error rate control. It is not simple to apply the Type-2 weighted
closed procedure, WCL2, in practice and, in any case, it is not more powerful than WCL1. Thus we
are left with WCL1 or its conservative step-up short-cut, CWCL1, as the only feasible alternatives.
We recommend WCL1, although it has the drawback of difficulty of interpretation to practitioners.
If the latter is an important consideration then CWCL1 may be used instead, but with a consequent
loss of power. Simulations indicate that both WCL1 and CWCL1 control the familywise error rate
under positive dependence, and may only be slightly anticonservative under negative dependence.
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APPENDIX
Proof of Proposition 1

The symmetry of the familywise error rate function of WHC2 about w1 = 1/2 is obvious. Hence, without
loss of generality, we may assume that w1 � w2, i.e., w1 � 1/2. Let

p∗
(1) = min

{
p1

w1
,

p2

w2

}
, p∗

(2) = max

{
p1

w1
,

p2

w2

}
.
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Then

1 − FWER = pr

(
p∗

(1) >
α

w(1) + w(2)
, p∗

(2) >
α

w(2)

)

= pr

(
p1

w1
> α, p2 > α,

p1

w1
� p2

w2

)
+ pr

(
p2

w2
> α, p1 > α,

p1

w1
>

p2

w2

)
= P1 + P2,

say.
We first evaluate

P1 =
∫ 1

α

∫ w1 p2/w2

w1α

dp1 dp2 =
∫ 1

α

(
w1

w2
p2 − w1α

)
dp2 = w1

2w2
− w1α − w1

2w2
α2 + w1α

2.

To evaluate P2, we consider two cases. First, if
w2

w1
α � 1, i.e.,

α

1 + α
� w1 � 1

2 ,

then

P2 = P21 =
∫ w2α/w1

w2α

∫ 1

α

dp1 dp2 +
∫ 1

w2α/w1

∫ 1

w1 p2/w2

dp1 dp2

= (1 − α)

(
w2

w1
α − w2α

)
+

(
1 − w1

2w2
− w2

w1
α + w2

2w1
α2

)

and

1 − FWER = P1 + P21 = 1 − α + α2 − α2

2

(
w1

w2
+ w2

w1

)
.

Secondly, if

w2

w1
α > 1, i.e., w1 <

α

1 + α
,

then

P2 = P22 =
∫ 1

w2α

∫ 1

α

dp1 dp2 = (1 − w2α)(1 − α)

and

1 − FWER = P1 + P22 = (1 − α)2 + w1

2w2
(1 − α2).

The expressions in (9) follow immediately. The minimum and maximum familywise error rates are α and
1 − (1 − α)2 = α(2 − α), respectively. This completes the proof of the proposition. �
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